
1

�� � �� � ��� ��	
� �
 �� � �� �

 � �� � � � �
�
 � � �

Prof. Hui Jiang

Dept of Computer Science and Engineering

York University

�� � �
��� ! "# # $&% ' ! (� ')+* , -) ' ./ 0

12 34 5 6� 72 8

• Problems with the software solutions.

– Not easy to generalize to more complex synchronization
problems.

– Complicated programming, not f lexible to use.

• Semaphore: an easy-to-use synchronization tool

– An integer variable SS

– wait(S) (S) {

while (SS<=0) ;

SS-- ;

}

– signal(S) (S) {

SS++ ;

}

12 34 5 6� 72 9 84 : 2 ;< =?>

@ 6 2 AB 5 7� C2 8 8 C 7 D @ D C4 EFB 82 C @ D� A 5 7� G E 2 3

• The n processes share a semaphore,

Semaphore mutex ; // mutex is init ialized to 1.

do {

wait(mutex);

critical section of Pi

signal(mutex);

remainder section of Pi

} while (1);

Process Pi

12 3 4 5 6� 72 9 84 : 2 ;H = >

4 8 4 I 2 A 2 74 E 1?J A C 6 7� A D?K 4 @ D� A L� � E

• Execute B in Pj only after A executed in Pi

• Use semaphore flag init ialized to 0

…
A
signal (flag) ;
…

…
wait (flag) ;
B
…

Pi Pj

2

12 3 4 5 6� 72 � D @ 6� 9 @ G 9 8J B �4 D @ D A :

• Previous definition of semaphore requires busy waiting

– It is called spinlock.

– spinlock does not need context switch, but waste CPU cycles
in a continuous loop.

– spinlock is OK only for lock waiting is very short.

• Semaphore without busy-waiting:

– In defining wait(), rather than busy-waiting, the process makes
system calls to block itself and switch back to waiting state,
and put the process to a waiting queue associated with the
semaphore. The control is transferred to CPU scheduler.

– In defining signal(), the process makes system calls to pick a
process in the waiting queue of the semaphore, wake it up by
moving it to the ready queue to wait for CPU scheduling.

12 34 5 6� 72 � D @ 6� 9 @ G 9 8J B �4 D @ D A :
• Define a semaphore as a record

typedef struct {

int value; // Init ialized to 1

struct process *L;
} semaphore;

• Assume two system calls:

– block() suspends the process that invokes it.

– wakeup(P) resumes the execution of a blocked process P.

• Normally this type of semaphore is implemented in kernel.

12 3 4 5 6� 72 � D @ 6� 9 @ G 9 8J B �4 D @ D A :

• Semaphore operations now defined as

wait(S):
S.value--;

if (S.value < 0) {

add this process to S.L;
block();

}

signal(S):
S.value++;

if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

12 34 5 6� 72 � 3 5 E 2 3 2 A @4 @ D� A ;< =

• In uni-processor machine, disabling interrupt before modifying
semaphore.

signal(SS) {

Disable_Interrupt ;
SS++ ;
Enable_Interrupt ;
return ;

}

wait(SS) {

do {
Disable_Interrupt;
if(SS>0) {

SS-- ;
Enable_Interrupt ;
return ;

} else {
Enable_Interrupt ;

}
} while(1) ;

}

3

12 34 5 6� 72 � 3 5 E 2 3 2 A @4 @ D� A ;H =

• In multi-processor machine, inhibit ing interrupt of all
processors is not easy and efficient.

• Use software solution to critical-section problems
– e.g., bakery algorithm
– Treat wait() and signal() as critical sections

• Example: implement spinlock between two processes
– Use Peterson’s solut ion for process synchronization
– Shared data:

Semaphore S ; S ; Init ially SS=1

boolean flag[2]; initially flag [0] = flag [1] = false.
int turn; initially turn = 0 or 1.

12 34 5 6� 72 � 3 5 E 2 3 2 A @4 @ D� A ;� =
wait(SS) {

int i=process_ID(); //0

�

P0, 1

�

P1
int j=(i+1)%2 ;

do {
flag [i]:= true; //request to enter
turn = j;
while (flag [j] and turn = j) ;
if (SS >0) { //critical section

SS--;
flag [i] = false;
return ;

} else {
flag [i] = false;

}
} while (1);

}

signal(SS) {
int i=process_ID(); //0

�
P0, 1

�
P1

int j=(i+1)%2 ;

flag [i]:= true; //request to enter
turn = j;
while (flag [j] and turn = j) ;

SS++; //critical section

flag [i] = false;

return ;
}

L �� LJ 52 8 � � 12 34 5 6� 72 8

• Counting semaphore – integer value can range over an
unrestricted domain.

• Binary semaphore – integer value can range only between 0
and 1; simpler to implement by hardware.

• We can implement a counting semaphore S by using two
binary semaphore.

� 3 5 E 2 32 A @ D A : C� 9 A @ D A : 8 2 34 5 6� 72

� � D @ 6 � D A 4 7J 12 3 4 5 6� 72

• Data structures:
binary-semaphore S1, S2;
int C:

• Init ialization:
S1 = 1
S2 = 0
C = init ial value of semaphore S

4

� �� ��� �� � � � �	

• wait(S) operation
wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

• signal(S) operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

��
 � � �� �� � ��� � � � �� � �� � � � � ���
 � � � �

• The Bounded-Buffer Problem

• The Readers-Writers Problem

• The Dining-Philosophers Problem

� � � !� !#" � � �� � �� � ��� �

• A producer produces some data for a consumer to
consume. They share a bounded-buffer for data
transferring.

• Shared memory:

A buffer to hold at most n items

• Shared data (three semaphores)

Semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

� � � !� ! " � � �� � �� � � �� �$

�� � ! � � � �� �� � � �

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

5

� � � !� !#" � � �� � �� � ��� �$

� � � � �� � �� �� � � �

do {
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

� �� ��
 !� � �" �� � �� � � �� � �� � �
• Many processes concurrently access a data object

– Readers: only read the data

– Writers: update and may write the data object

• Only writer needs exclusive access of the data

• The first readers-writers problem:

– Unless a writer has already obtained permission to use the
shared data, the readers are always allowed to access data.

– May starve a writer.

• The second readers-writer problem:

– Once a writer is ready, the writer performs its write as soon
as possible.

– May starve a reader

� �� �� � ��
 !� � �" �� � �� � � �� � � �� �

• Use semaphore to implement 1st readers-writer problem

• Shared data:

int readcount = 0 ; // keep track the number of readers
// accessing the data object

Semaphore mutex = 1 ; // mutually exclusive access to
// readcount among readers

Semaphore wrt = 1 ; // mutual exclusion to the data object
// used by every writer

//also set by the 1st reader to read the data

// and clear by the last reader to finish reading

� �� �� � ��
 !� � �" �� � �� � � �� � � �� �

…
wait(wrt);
…

writing is performed
…

signal(wrt);
…

Writer Process

…
wait(mutex);
readcount++;
if (readcount == 1) wait(wrt);
signal(mutex);

…
reading is performed
…
wait(mutex);
readcount--;
if (readcount == 0) signal(wrt);
signal(mutex);
…

Reader Process

6

� �� � � � � �� " � � � � � � �� �� � � �� � ��� �

• Five philosophers are
thinking or eating

• Using only five
chopsticks

• When thinking, no need
for chopsticks.

• When eating, need two
closest chopsticks.

• Can pick up only one
chopsticks

• Can not get the one
already in the hand of a
neighbor.

� �� � � � � �� " � � � � � � �� �� � � �� � � �� �$

� � �
 � � �� � � � � � � � �

• Represent each chopstick with a semaphore

Semaphore chopstick[5]; // Initialized to 1

do {
wait(chopstick[i]) ;
wait(chopstick[(i+1) % 5]) ;

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

Philosopher i
(i=0,1,2,3,4)

� � � �� � � � � � � �
 � � �� � � �
 � �

Mistake 1:

…
signal(mutex) ;
…
Critical
Section
…
wait(mutex) ;

Mistake 2:

…
wait(mutex) ;
…
Critical
Section
…
wait(mutex) ;

Mistake 3:

…
wait(mutex) ;
…
Critical
Section
…

Mistake 4:

…
Critical
Section
…
signal(mutex) ;

� �
 � �
 � � � �
 � ! ��
 ! � �� �

• Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is
suspended.

• Deadlock – two or more processes are waiting indefinitely
for an event that can be caused by only one of the waiting
processes.

• Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);� �

signal(S); signal(Q);
signal(Q) signal(S);

