CSE 3221.3
Operating System Fundamentals

No.6

Process Synchronization(2)

Prof. Hui Jiang
Dept of Computer Science and Engineering
York University

Semaphore usage (1):
the n-process critical-section problem

* The n processes share a semaphore,
Semaphore mutex ; // mutex is initialized to 1.

Process Pi | do {
wait(mutex);

critical section of Pi
signal(mutex);

remainder section of Pi

} while (1);

Semaphores

* Problems with the software solutions.

— Not easy to generalize to more complex synchronization
problems.

— Complicated programming, not flexible to use.
* Semaphore: an easy-to-use synchronization tool
— An integer variable S
— wait(S) {
while (S<=0);
S--;
}
— signal(S) {
S++ ;

}

Semaphore usage (2):
as a General Synchronization Tool

» Execute Bin P; only after A executed in P
* Use semaphore flag initialized to 0

A wait (flag) ;
signal (flag) ; B

Semaphore without busy-waiting

« Previous definition of semaphore requires busy waiting
— ltis called spinlock.

— spinlock does not need context switch, but waste CPU cycles
in a continuous loop.

— spinlock is OK only for lock waiting is very short.
* Semaphore without busy-waiting:

— In defining wait(), rather than busy-waiting, the process makes
system calls to block itself and switch back to waiting state,
and put the process to a waiting queue associated with the
semaphore. The control is transferred to CPU scheduler.

— In defining signal(), the process makes system calls to pick a

process in the waiting queue of the semaphore, wake it up by
moving it to the ready queue to wait for CPU scheduling.

Semaphore without busy-waiting
* Semaphore operations now defined as
wait(S):
S.value--;
if (S.value < 0) {
add this process to S.L;
block();
}
signal(S):
S.value++;
if (S.value <=0) {
remove a process P from S.L;
wakeup(P);
}

Semaphore without busy-waiting

« Define a semaphore as arecord
typedef struct {
int value; //Initialized to 1

struct process *L;
} semaphore;

¢ Assume two system calls:
— block() suspends the process that invokes it.
— wakeup(P) resumes the execution of a blocked process P.

« Normally this type of semaphore is implemented in kernel.

Semaphore Implementation(1)

* In uni-processor machine, disabling interrupt before modifying

semaphore.
wait(S) {
do { -
Disable_Interrupt; signal(S) {
if(S>0) {
S Disable_Interrupt ;
Enable_lInterrupt ; S++
return ; Enable_Interrupt ;
}else { return ;
Enable_lInterrupt ;
} }
} while(2) ;

Semaphore Implementation(2)

« In multi-processor machine, inhibiting interrupt of all
processors is not easy and efficient.

« Use software solution to critical-section problems
— e.g., bakery algorithm
— Treat wait() and signal() as critical sections
« Example: implement spinlock between two processes
— Use Peterson’s solution for process synchronization
— Shared data:

Semaphore S ; Initially S=1

boolean flag[2]; initially flag [0] = flag [1] = false.
intturn; initially turn =0 or 1.

Two Types of Semaphores

« Counting semaphore — integer value can range over an
unrestricted domain.

« Binary semaphore —integer value can range only between 0
and 1; simpler to implement by hardware.

* We can implement a counting semaphore S by using two
binary semaphore.

wait(S) {
int i=process_ID(); /0>P0, 1->P1
int j=(i+1)%2 ;

do {
flag [i]:= true; //request to enter
turn = j;

while (flag [j] and turn =j) ;
if (5 >0) { //critical section

S-;

flag [i] = false;
return ;

}else {
flag [i] = false;

}

} while (1);
}

Semaphore Implementation(3)

signal(S) {
int i=process_ID(); /0>P0, 1->P1
int j=(i+1)%2 ;

flag [i]:= true; //request to enter
turn = j;
while (flag [j]and turn =j) ;

S++; /[critical section

flag [i] = false;

return ;

« Data structures:

intC:
« Initialization:

S1=1

S2=0

Implementing counting semaphore
S with Binary Semaphore

binary-semaphore S1, S2;

C =iinitial value of semaphore S

Implementing S

. wait(S) operation Classic Problems of Synchronization
wait(S1);
C-;
if (C<0){ * The Bounded-Buffer Problem
signal(S1);
wait(S2);
} * The Readers-Writers Problem
signal(S1);

. signal(S) operation * The Dining-Philosophers Problem

wait(S1);

C ++;

if (C<=0)
signal(S2);

else
signal(S1);

Bounded-Buffer Problem Bounded-Buffer Problem:
Producer Process

« A producer produces some data for a consumer to

consume. They share a bounded-buffer for data do {
transferring.

+ Shared memory: produce an item in nextp
A buffer to hold at most nitems

« Shared data (three semaphores) wait(empty);

wait(mutex);
Semaphore full, empty, mutex;

add nextp to buffer

Initially:
full = 0, empty = n, mutex = 1 signal(mutex);
signal(full);
} while (1);

Bounded-Buffer Problem:
Consumer Process

do {
wait(full)
wait(mutex);

remove an item from buffer to nextc

signal(mutex);
signal(empty);

consume the item in nextc

} while (1)

The 1st Readers-Writers Problem

* Use semaphore to implement 1st readers-writer problem
¢ Shared data:

intreadcount=0; // keep track the number of readers
/I accessing the data object

Semaphore mutex = 1; // mutually exclusive access to
/I readcount among readers

Semaphorewrt=1; // mutual exclusion to the data object
/lused by every writer

/lalso set by the 1st reader to read the data
/I and clear by the last reader to finish reading

The Readers-Writers Problem

* Many processes concurrently access a data object
— Readers: only read the data
— Writers: update and may write the data object

« Only writer needs exclusive access of the data

« The first readers-writers problem:

— Unless a writer has already obtained permission to use the
shared data, the readers are always allowed to access data.

— May starve a writer.
* The second readers-writer problem:

— Once a writer is ready, the writer performs its write as soon
as possible.

— May starve a reader

The 1st Readers-Writers Problem

. Reader Process
Writer Process

wait(mutex);
readcount++;

if (readcount == 1) wait(wrt);
writing is performed signal(mutex);

wait(wrt);

signal(wrt); reading is performed

wait(mutex);

readcount--;

if (readcount == 0) signal(wrt);
signal(mutex);

The Dining-Philosophers Problem

« Five philosophers are
thinking or eating @ @
¢ Using only five

chopsticks O Q

* When thinking, no need
for chopsticks.

* When eating, need two
closest chopsticks.
¢ Can pick up only one

chopsticks

« Can not get the one
already in the hand of a @

neighbor.

Incorrect Semaphore Usage

Mistake 1: Mistake 2: Mistake 3: Mistake 4:
signal(mutex) ; wait(mutex) ; wait(mutex) ; .C.:.ritical

oo e e Section
Critical Critical Critical

Section Section Section signal(mutex) ;
wait(mutex) ; wait(mutex) ;

The Dining-Philosophers Problem:
Semaphore Solution

* Represent each chopstick with a semaphore
Semaphore chopstick[5]; // Initialized to 1

do {
wait(chopstick[i]) ;
wait(chopstick[(i+1) % 5]) ;

Philosopher i
(i=0,1,2,3,4)

eat

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

iHink
}wh.i.l.e (1);

Starvation and Deadlock

« Starvation —indefinite blocking. A process may never be
removed from the semaphore queue in which it is
suspended.

« Deadlock —two or more processes are waiting indefinitely
for an event that can be caused by only one of the waiting

processes.
* Let Sand Q be two semaphores initialized to 1
PO Pl
wait(S); wait(Q);
wait(Q); wait(S);
signal(S); signal(Q);
signal(Q) signal(S);

